On the Role of the Indian Ocean in a Coupled Ocean–Atmosphere Model of El Niño and the Southern Oscillation

1985 ◽  
Vol 42 (22) ◽  
pp. 2439-2442 ◽  
Author(s):  
David L. T. Anderson ◽  
Julian P. McCreary
Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1094
Author(s):  
Mary T. Kayano ◽  
Rita V. Andreoli ◽  
Wilmar L. Cerón ◽  
Rodrigo A. F. Souza

This paper examines the relative role of the Indian Ocean basin-wide (IOBW) mode and El Niño–Southern Oscillation (ENSO) in the atmospheric circulation and rainfall interannual variations over South America (SA) during southern summer of the 1951‒2016 period. The effects of the warm IOBW and El Niño (EN) events, and of the cold IOBW and La Niña (LN) events are examined using partial correlations. The ENSO and IOBW modes, through the associated large-scale and regional anomalous circulation patterns, induce contrasting effects on the rainfall in northeastern SA. The EN without the warm IOBW effect induces anomalously dry conditions over eastern Amazon and part of northeastern Brazil (NEB) through anomalous sinking motions of the EN-related anomalous Walker and Hadley cells and strong moisture divergence associated with a vigorous anticyclone over tropical South Atlantic (TSA) and SA. The warm IOBW without the EN effect induces anomalously wet conditions in NEB, which is marginally related to the anomalous Walker and Hadley cells but is modulated by an anticyclone over SA between the equator and 20° S, and a cyclone in the southwestern Atlantic between 20° S and 40° S. The results here might be relevant for climate monitoring and modeling studies.


2019 ◽  
Vol 60 ◽  
pp. C215-C230
Author(s):  
S. L. Osbrough ◽  
J. S. Frederiksen ◽  
C. S. Frederiksen

New methods are presented for determining the role of coupled ocean-atmosphere model climate bias on the strength and variability of the El Nino-Southern Oscillation (ENSO) and on the seasonal ensemble prediction of El Nino and La Nina events. An intermediate complexity model with a global atmosphere coupled to a Pacific basin ocean is executed with parallelised algorithms to produce computationally efficient year-long forecasts of large ensembles of coupled flow fields, beginning every month between 1980 and 1999. Firstly, the model is provided with forcing functions that reproduce the average annual cycle of climatology of the atmosphere and ocean based on reanalysed observations. We also configure the model to generate realistic ENSO fluctuations. Next, an ensemble prediction scheme is employed which produces perturbations that amplify rapidly over a month. These perturbations are added to the analyses and give the initial conditions for the ensemble forecasts. The skill of the forecasts is presented and the dependency on the annual and ENSO cycles determined. Secondly, we replace the forcing functions in our model with functions that reproduce the averaged annual cycles of climatology of two state of the art, comprehensive Coupled General Circulation Models. The changes in skill of subsequent ensemble forecasts elucidate the roles of model bias in error growth and potential predictability. References C. S. Frederiksen, J. S. Frederiksen, and R. C. Balgovind. ENSO variability and prediction in a coupled ocean-atmosphere model. Aust. Met. Ocean. J., 59:35–52, 2010a. URL http://www.bom.gov.au/jshess/papers.php?year=2010. C. S. Frederiksen, J. S. Frederiksen, and R. C. Balgovind. Dynamic variability and seasonal predictability in an intermediate complexity coupled ocean-atmosphere model. In Proceedings of the 16th Biennial Computational Techniques and Applications Conference, CTAC-2012, volume 54 of ANZIAM J., pages C34–C55, 2013a. doi:10.21914/anziamj.v54i0.6296. C. S. Frederiksen, J. S. Frederiksen, J. M. Sisson, and S. L. Osbrough. Trends and projections of Southern Hemisphere baroclinicity: the role of external forcing and impact on Australian rainfall. Clim. Dyn., 48:3261–3282, 2017. doi:10.1007/s00382-016-3263-8. J. S. Frederiksen, C. S. Frederiksen, and S. L. Osbrough. Seasonal ensemble prediction with a coupled ocean-atmosphere model. Aust. Met. Ocean. J., 59:53–66, 2010b. URL http://www.bom.gov.au/jshess/papers.php?year=2010. J. S. Frederiksen, C. S. Frederiksen, and S. L. Osbrough. Methods of ensemble prediction for seasonal forecasts with a coupled ocean-atmosphere model. In Proceedings of the 16th Biennial Computational Techniques and Applications Conference, CTAC-2012, volume 54 of ANZIAM J., pages C361–C376, 2013b. doi:10.21914/anziamj.v54i0.6509. P. R. Gent, G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, M. Vertenstein, P. H. Worley, Z.-L. Yang, and M. Zhang. The community Climate System Model version 4. J. Clim., 24:4973–4991, 2011. doi:10.1175/2011JCLI4083.1. S. Grainger, C. S. Frederiksen, and X. Zheng. Assessment of modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP5 models. J. Clim., 27:8107–8125, 2014. doi:10.1175/JCLI-D-14-00251.1. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph. The NCEP/NCAR 40-year reanalysis project. B. Am. Meteorol. Soc., 77:437–472, 1996. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. H. A. Rashid, A. Sullivan, A. C. Hirst, D. Bi, X. Zhou, and S. J. Marsland. Evaluation of El Nino-Southern Oscillation in the ACCESS coupled model simulations for CMIP5. Aust. Met. Ocean. J., 63:161–180, 2013. doi:10.22499/2.6301.010. K. E. Taylor, R. J. Stouffer, and G. A. Meehl. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 93:485–498, 2012. doi:10.1175/BAMS-D-11-00094.1.


2021 ◽  
Author(s):  
Michael Mayer ◽  
Magdalena Alonso Balmaseda

AbstractThis study investigates the influence of the anomalously warm Indian Ocean state on the unprecedentedly weak Indonesian Throughflow (ITF) and the unexpected evolution of El Niño-Southern Oscillation (ENSO) during 2014–2016. It uses 25-month-long coupled twin forecast experiments with modified Indian Ocean initial conditions sampling observed decadal variations. An unperturbed experiment initialized in Feb 2014 forecasts moderately warm ENSO conditions in year 1 and year 2 and an anomalously weak ITF throughout, which acts to keep tropical Pacific ocean heat content (OHC) anomalously high. Changing only the Indian Ocean to cooler 1997 conditions substantially alters the 2-year forecast of Tropical Pacific conditions. Differences include (i) increased probability of strong El Niño in 2014 and La Niña in 2015, (ii) significantly increased ITF transports and (iii), as a consequence, stronger Pacific ocean heat divergence and thus a reduction of Pacific OHC over the two years. The Indian Ocean’s impact in year 1 is via the atmospheric bridge arising from altered Indian Ocean Dipole conditions. Effects of altered ITF and associated ocean heat divergence (oceanic tunnel) become apparent by year 2, including modified ENSO probabilities and Tropical Pacific OHC. A mirrored twin experiment starting from unperturbed 1997 conditions and several sensitivity experiments corroborate these findings. This work demonstrates the importance of the Indian Ocean’s decadal variations on ENSO and highlights the previously underappreciated role of the oceanic tunnel. Results also indicate that, given the physical links between year-to-year ENSO variations, 2-year-long forecasts can provide additional guidance for interpretation of forecasted year-1 ENSO probabilities.


2018 ◽  
Vol 31 (24) ◽  
pp. 10123-10139 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


2007 ◽  
Vol 20 (13) ◽  
pp. 2872-2880 ◽  
Author(s):  
Gary Meyers ◽  
Peter McIntosh ◽  
Lidia Pigot ◽  
Mike Pook

Abstract The Indian Ocean zonal dipole is a mode of variability in sea surface temperature that seriously affects the climate of many nations around the Indian Ocean rim, as well as the global climate system. It has been the subject of increasing research, and sometimes of scientific debate concerning its existence/nonexistence and dependence/independence on/from the El Niño–Southern Oscillation, since it was first clearly identified in Nature in 1999. Much of the debate occurred because people did not agree on what years are the El Niño or La Niña years, not to mention the newly defined years of the positive or negative dipole. A method that identifies when the positive or negative extrema of the El Niño–Southern Oscillation and Indian Ocean dipole occur is proposed, and this method is used to classify each year from 1876 to 1999. The method is statistical in nature, but has a strong basis on the oceanic physical mechanisms that control the variability of the near-equatorial Indo-Pacific basin. Early in the study it was found that some years could not be clearly classified due to strong decadal variation; these years also must be recognized, along with the reason for their ambiguity. The sensitivity of the classification of years is tested by calculating composite maps of the Indo-Pacific sea surface temperature anomaly and the probability of below median Australian rainfall for different categories of the El Niño–Indian Ocean relationship.


2017 ◽  
Vol 30 (24) ◽  
pp. 10155-10178 ◽  
Author(s):  
Claudia E. Wieners ◽  
Henk A. Dijkstra ◽  
Will P. M. de Ruijter

In recent years it has been proposed that a negative (positive) Indian Ocean dipole (IOD) in boreal autumn favors an El Niño (La Niña) at a lead time of 15 months. Observational analysis suggests that a negative IOD might be accompanied by easterly anomalies over the western Pacific. Such easterlies can enhance the western Pacific warm water volume, thus favoring El Niño development from the following boreal spring onward. However, a Gill-model response to a negative IOD forcing would lead to nearly zero winds over the western Pacific. The authors hypothesize that a negative IOD—or even a cool western Indian Ocean alone—leads to low-level air convergence and hence enhanced convectional heating over the Maritime Continent, which in turn amplifies the wind convergence so as to cause easterly winds over the western Pacific. This hypothesis is tested by coupling an idealized Indian Ocean model and a convective feedback model over the Maritime Continent to the Zebiak–Cane model. It is found that, for a sufficiently strong convection feedback, a negative (positive) IOD indeed forces easterlies (westerlies) over the western Pacific. The contribution from the eastern IOD pole dominates. IOD variability is found to destabilize the El Niño–Southern Oscillation (ENSO) mode, whereas Indian Ocean basinwide warming (IOB) variability dampens ENSO, even in the presence of convection. The influence of the Indian Ocean on the spectral properties of ENSO is dominated by the IOB, while the IOD is a better predictor for individual ENSO events.


2019 ◽  
Vol 32 (22) ◽  
pp. 7989-8001 ◽  
Author(s):  
David MacLeod ◽  
Cyril Caminade

Abstract El Niño–Southern Oscillation (ENSO) has large socioeconomic impacts worldwide. The positive phase of ENSO, El Niño, has been linked to intense rainfall over East Africa during the short rains season (October–December). However, we show here that during the extremely strong 2015 El Niño the precipitation anomaly over most of East Africa during the short rains season was less intense than experienced during previous El Niños, linked to less intense easterlies over the Indian Ocean. This moderate impact was not indicated by reforecasts from the ECMWF operational seasonal forecasting system, SEAS5, which instead forecast large probabilities of an extreme wet signal, with stronger easterly anomalies over the surface of the Indian Ocean and a colder eastern Indian Ocean/western Pacific than was observed. To confirm the relationship of the eastern Indian Ocean to East African rainfall in the forecast for 2015, atmospheric relaxation experiments are carried out that constrain the east Indian Ocean lower troposphere to reanalysis. By doing so the strong wet forecast signal is reduced. These results raise the possibility that link between ENSO and Indian Ocean dipole events is too strong in the ECMWF dynamical seasonal forecast system and that model predictions for the East African short rains rainfall during strong El Niño events may have a bias toward high probabilities of wet conditions.


Author(s):  
Jing-Jia Luo

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article. The tropical Indian Ocean is unique in several aspects. Unlike the Pacific and the Atlantic Oceans, the Indian Ocean is bounded to the north by a large landmass, the Eurasian continent. The large thermal heat contrast between the ocean in the south and the land in the north induces the world’s strongest monsoon systems in South and East Asia, in response to the seasonal migration of solar radiation. The strong and seasonally reversing surface winds generate large seasonal variations in ocean currents and basin-wide meridional heat transport across the equator. In contrast to the tropical Pacific and the Atlantic, where easterly trade winds prevail throughout the year, westerly winds (albeit with a relatively weak magnitude) blow along the equatorial Indian Ocean, particularly during the boreal spring and autumn seasons, generating the semi-annual Yoshida-Wyrtki eastward equatorial ocean currents. As a consequence of the lack of equatorial upwelling, the tropical Indian Ocean occupies the largest portion of the warm water pool (with Sea Surface Temperature [SST] being greater than 28 °C) on Earth. The massive warm water provides a huge potential energy available for deep convections that significantly affect the weather-climate over the globe. It is therefore of vital importance to discover and understand climate variabilities in the Indian Ocean and to further develop a capability to correctly predict the seasonal departures of the warm waters and their global teleconnections. The Indian Ocean Dipole (IOD) is the one of the recently discovered climate variables in the tropical Indian Ocean. During the development of the super El Niño in 1997, the climatological zonal SST gradient along the equator was much reduced (with strong cold SST anomalies in the east and warm anomalies in the west). The surface westerly winds switched to easterlies, and the ocean thermocline became shallow in the east and deep in the west. These features are reminiscent of what are observed during El Niño years in the Pacific, representing a typical coupled process between the ocean and the atmosphere. The IOD event in 1997 contributed significantly to floods in eastern Africa and severe droughts and bushfires in Indonesia and southeastern Australia. Since the discovery of the 1997 IOD event, extensive efforts have been made to lead the rapid progress in understanding the air-sea coupled climate variabilities in the Indian Ocean; and many approaches, including simple statistical models and comprehensive ocean-atmosphere coupled models, have been developed to simulate and predict the Indian Ocean climate. Essential to the discussion are the ocean-atmosphere dynamics underpinning the seasonal predictability of the IOD, critical factors that limit the IOD predictability (inter-comparison with El Niño-Southern Oscillation [ENSO]), observations and initialization approaches that provide realistic initial conditions for IOD predictions, models and approaches that have been developed to simulate and predict the IOD, the influence of global warming on the IOD predictability, impacts of IOD-ENSO interactions on the IOD predictability, and the current status and perspectives of the IOD prediction at seasonal to multi-annual timescales.


Sign in / Sign up

Export Citation Format

Share Document